

Using Experiments to Build a Body of Knowledge

Victor R. Basili

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
and
Fraunhofer Center - Maryland

Evolving Knowledge in a Discipline

- Understanding a discipline involves learning, i.e.,
 - observation
 - reflection, and encapsulation of knowledge
 - model building (application domain, problem solving processes)
 - experimentation
 - model evolution over time
- This is the paradigm that has been used in many fields,
 - e.g., physics, medicine, manufacturing.
- The differences among the fields are
 - how models are built and analyzed
 - how experimentation gets done

- Software engineering is a laboratory science
- We need to understand the nature of the processes, products and the relationship between the two in the context of the system
- All software is not the same
 - there are a large number of variables that cause differences
 - their effects need to be understood and studied
- Currently,
 - insufficient set of models to reason about the discipline
 - lack of recognition of the limits of technologies for the context
 - there is insufficient analysis and experimentation
- This talk is about experimentation in the software discipline

Where Experiments/Knowledge Building fits in the Quality Improvement Paradigm

Gather, sift, and analyze data to build baselines

- Identify software characteristics
- Characterize process used
- Motivate goals

EXAMPLES

TIME

- Many categories: from controlled experiments to case studies
- Performed for many purposes: to study process effects, product characteristics, environmental constraints (cost or schedule).
- Typically they are looking for a relationship between two variables, such as the relationship between process characteristics and product characteristics
- Problems with experiments (controlled)
 - the large number of variables that cause differences
 - deal with low level issues, microcosm of reality, small set of variables
- => Combining experiments is necessary to build a body of knowledge that is useful to the discipline

Criteria for building comprehensive bodies of knowledge in Software Engineering

- Sets of high level hypotheses
 - address interest of the software engineering community
 - identify sets of dependent and independent variables
 - provide options for the selecting detailed hypotheses
- Sets of detailed hypotheses
 - written in a context that allow for a well defined experiment
 - combinable to support high level hypotheses
- Context variables that can be changed to allow for
 - experimental design variation (make up for validity threats)
 - specifics of the process context;
- Sufficient documentation for replication and combination
- Community of researchers willing to collaborate and replicate.

- General Interest to the community
 - Analyzing the Effects of a SE Process on a Product
- What are the high level questions of interest?
 - Can we effectively design and study techniques that are procedurally defined, document and notation specific, goal driven, and empirically validated for use?
 - Can we demonstrate that a procedural approach to a software engineering task could be more effective than a less procedural one under certain conditions?
- What are the high level hypotheses?
 - A reading technique that is procedurally defined, document and notation specific, and goal driven for use is more effective than one that does not have these characteristics
 - A procedural approach to reading based upon specific goals will find different defects than one based upon different goals

Example: Understanding for Use Motivation for Reading

Why pick reading?

Reading is a **key technical activity** for analyzing and constructing software documents and products

Reading is a model for writing

Reading is critical for reviews, maintenance, reuse, ...

What is a reading technique?

a concrete set of instructions given to the reader saying how to read and what to look for in a software product

More Specifically, software reading is

the individual analysis of a software artifact

e.g., requirements, design, code, test plans

to achieve the understanding needed for a particular task

e.g., defect detection, reuse, maintenance

- How do we build a framework for combining hypotheses from individual experiments, isolating out individual variables?
- Consider using the Goal/Question/Metrics Paradigm
- Goal Template:
 - Analyze an object of study in order to purpose with respect to focus from the point of view of who in the context of environment
- Consider decomposing each of the variables to identify and classify the independent, dependent, and context variables

- Analyzing the Effects of SE Processes on Products
 - Analyze <u>processes</u> to <u>evaluate</u> their <u>effectiveness on a product</u> from the point of view of the <u>knowledge builder</u> in the context of (<u>variable</u> <u>set</u>)
- Characterize the object of study:
 - Object of Study (Process, Product, ...)
 - Process Class (Life Cycle Model, Method, Technique, Tool, ...)
 - Technique Class (Reading, Testing, Designing, ...)
- Analyze <u>reading techniques</u> to <u>evaluate</u> their <u>effectiveness on a</u> <u>product</u> from the point of view of the <u>knowledge builder</u> in the context of variable set

- Analyze <u>reading techniques</u> to <u>evaluate</u> their <u>effectiveness on</u> <u>products</u> from the point of view of the <u>knowledge builder</u> in the context of <u>variable set</u> (G1)
- Characterize the focus: Effectiveness on a Product
 - Effectiveness Class (Construction, Analysis, ...)
 - Effectiveness Goal (Defect Detection, Usability, ...
 - Product Type (Requirements, Design, Test Plan, User Interface, ...
 - Product Notation (English, SCR, Mathematics, Screen Shot, ...
- Example Goal: Analyze <u>reading techniques</u> to <u>evaluate</u> their <u>ability to detect defects in a Requirements Document</u> from the point of view of the <u>knowledge builder</u> in the context of <u>variable set</u> (G2)

Refining a High Level Focus

Families of Reading Techniques

Families of Reading Techniques

Reading

Process:Technique

G1 Analyze <u>reading techniques</u> to <u>evaluate</u> their <u>effectiveness on products</u> from the point of view of the <u>knowledge builder</u> in the context of <u>variable set</u>

Project Code White Box Black Box SCR English Screen Shot Source Library Framework Framework Code

Scenario-Based Reading Definition

- Given this set of characteristics/dimensions, an approach to generating a family of reading techniques, called operational scenarios, has been defined
- Goals: To define a set of reading technologies that can be
 - document and notation specific
 - tailorable to the project and environment
 - procedurally defined
 - goal driven
 - focused to provide a particular coverage of the document
 - empirically verified to be effective for its use
 - usable in existing methods, such as inspections
- These goals defines a set of guidelines/characteristics for a process definition for reading techniques that can be studied experimentally

- Characterize the process:
 - Technique Class (Reading, Testing, Designing, ...)
 - Technique Characteristics (goal oriented, procedurally based, coverage focussed, documentation and notation specific, ...)
- Analyze a <u>set of goal-oriented, procedurally-based, coverage</u>
 <u>focussed, document and notation specific reading techniques</u> to
 <u>evaluate</u> their <u>effectiveness on a product</u> from the point of view of the
 <u>knowledge builder</u> in the context of <u>(variable set)</u>
- Analyze a <u>set of scenario based reading techniques</u> to <u>evaluate</u> their <u>effectiveness on products</u> from the point of view of the <u>knowledge builder</u> in the context of (<u>variable set</u>)
- Attempts to satisfy the high level hypotheses and provide a frameworks for individual experiments

- Analyze a <u>set of scenario based reading techniques</u> to <u>evaluate</u> their <u>effectiveness on products</u> from the point of view of the <u>knowledge builder</u> in the context of (<u>variable set</u>)
- We have developed four families of reading techniques
 - parameterized for use in different contexts and
 - evaluated experimentally in those contexts

- Analyze a <u>set of scenario based reading techniques</u> to <u>evaluate</u> their <u>ability to detect defects in a Requirements</u>
 <u>Document</u> from the point of view of the <u>knowledge builder</u> in the context of <u>(variable set)</u>
- Example: Perspective -Based Reading:
 - Choose perspectives; designer, tester, user
 - Define procedural processes for each perspective
 - Choose experimental treatment
 - Choose defect classes
 - etc.
- Contexts (context variables) can be continually expanded, e.g., NASA/SEL subjects, Professional Software Engineering student, Bosch project personnel

Sample Set of Experiments

- We have run several experiments
 - on all four families of reading techniques
 - parameterized for use in different contexts
 - some involved us as directly as experimenters, others did not
- Example Contexts: (Government, University, Industry)
 - NASA/GSFC (PBR)
 - UM Professional SE Course (PBR, UBR)
 - UM Students (DBR, UBR, SBR)
 - Bureau of Census (UBR)
 - Robert Bosch (PBR)
 - Lucent (DBR)
- Example Countries: (U.S., Germany, Italy, Sweden, Scotland, Norway,...)

- There are still many questions that need to be covered:
 - Process variable (Independent variable) issues:
 - How do we define/specify the process?
 - How do we account for process conformance?
 - Effectiveness of Product (Dependent variable) issues:
 - How do we select good criteria for effectiveness?
 - Context Variables Issues:
 - What subjects are performing the process?
- Questions associated with the variables need to be further specified and documented for replication
- Varying the values of these variables allow us to
 - vary the detailed hypotheses
 - support validity of study results

Designing Detailed Experiments to Increase Knowledge

- We can build up knowledge by replicating detailed experiments, keeping the same hypothesis, combining results
- Varying Context Variables
 - subject experience
 - context (classroom, toy, off-line, in project)
 - variability among subjects
 - Vary order of events and activities
- Allows us to balance threats to validity
 - interaction of experience and treatment
 - spontaneous migration of subjects across treatments
 - replicating to counterbalance

Focused Families of Analysis Techniques

G3 Analyze a <u>set of processes focused to provide a particular coverage of an</u> <u>artifact</u> to <u>evaluate</u> their <u>ability to detect anomalies</u> from the point of view of the <u>knowledge builder</u> in the context of <u>(variable set)</u>

Conclusions from Experiments

- Able to combine the results of several experiments and build up our knowledge about software processes
 - We can effectively design and study techniques that are procedurally defined, document and notation specific, goal driven, and empirically validated for use
 - We can demonstrate that a procedural approach to a software engineering task could be more effective than a less procedural one under certain conditions (e.g., depends on experience)
 - A procedural approach to reading based upon specific goals will find defects related to those goals, so reading can tailored to the environment
 - et. al.

Conclusions about Knowledge Building Experimental Framework

Benefit to Researchers:

- ability to increase the effectiveness of individual experiments
- offers a framework for building relevant practical SE knowledge
- provides a way to develop and integrate laboratory manuals
- generate a community of experimenters

Benefits to Practitioners:

- offers some relevant practical SE knowledge
- provides a better basis for making judgements about selecting process
- shows importance of and ability to tailor "best practices"
- provides support for defining and documenting processes
- allows organizations to integrate their experiences with processes

Contributors to This Work

- Directly to the Ideas Presented here:
 - Forrest Shull, Filippo Lanubile
- As Experimenters Locally:
 - Reported Experiments: Scott Green, Oliver Laitenberger, Filippo Lanubile, Forrest Shull, Sivert Sorumgaard, Marvin Zelkowitz, Zhijun Zhang
 - New Studies Underway: Fred Fredericks, Shari Lawrence Pfleeger, Rae Kwon, Guilherme Travassos
- As Experimenters in Other Locations
 - ISERN members
 - Others